Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

نویسندگان

  • Rebecca Boll
  • Benjamin Erk
  • Ryan Coffee
  • Sebastian Trippel
  • Thomas Kierspel
  • Cédric Bomme
  • John D. Bozek
  • Mitchell Burkett
  • Sebastian Carron
  • Ken R. Ferguson
  • Lutz Foucar
  • Jochen Küpper
  • Tatiana Marchenko
  • Catalin Miron
  • Minna Patanen
  • Timur Osipov
  • Sebastian Schorb
  • Marc Simon
  • Michelle Swiggers
  • Simone Techert
  • Kiyoshi Ueda
  • Christoph Bostedt
  • Daniel Rolles
  • Artem Rudenko
چکیده

Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I(21+). The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization

We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond...

متن کامل

Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal

The interaction of intense femtosecond pulses with metals allows for generating ultrashort hard x-rays. In contrast to plasma theories, tunneling from the target into vacuum is introduced as electron generation step, followed by vacuum acceleration in the laser field and re-entrance into the target to generate characteristic x-rays and Bremsstrahlung. For negligible space charge in vacuum, the ...

متن کامل

Molecular Dynamics of XFEL-Induced Photo-Dissociation, Revealed by Ion-Ion Coincidence Measurements

X-ray free electron lasers (XFELs) providing ultrashort intense pulses of X-rays have proven to be excellent tools to investigate the dynamics of radiation-induced dissociation and charge redistribution in molecules and nanoparticles. Coincidence techniques, in particular multi-ion time-of-flight (TOF) coincident experiments, can provide detailed information on the photoabsorption, charge gener...

متن کامل

Even harmonic generation in isotropic media of dissociating homonuclear molecules

Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown o...

متن کامل

Unveiling and driving hidden resonances with high-fluence, high-intensity x-ray pulses.

We show that high fluence, high-intensity x-ray pulses from the world's first hard x-ray free-electron laser produce nonlinear phenomena that differ dramatically from the linear x-ray-matter interaction processes that are encountered at synchrotron x-ray sources. We use intense x-ray pulses of sub-10-fs duration to first reveal and subsequently drive the 1s↔2p resonance in singly ionized neon. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016